EEG Channel Correlation Based Model for Emotion Recognition
نویسندگان
چکیده
Emotion recognition using Artificial Intelligence (AI) is a fundamental prerequisite to improve Human-Computer Interaction (HCI). Recognizing emotion from Electroencephalogram (EEG) has been globally accepted in many applications such as intelligent thinking, decision-making, social communication, feeling detection, affective computing, etc. Nevertheless, due having too low amplitude variation related time on EEG signal, the proper of this signal become challenging. Usually, considerable effort required identify feature or set for an effective feature-based system. To extenuate manual human extraction, we proposed deep machine-learning-based model with Convolutional Neural Network (CNN). At first, one-dimensional data were converted Pearson's Correlation Coefficient (PCC) featured images channel correlation sub-bands. Then fed into CNN recognize emotion. Two protocols conducted, namely, protocol-1 two levels and protocol-2 three valence arousal that demonstrate We investigated only upper triangular portion PCC reduced computational complexity size memory without hampering accuracy. The maximum accuracy 78.22% 74.92% obtained internationally authorized DEAP dataset.
منابع مشابه
EEG-based Emotion Recognition pdfsubject
In the area of human-computer interaction information about the emotional state of a user becomes more and more important. For instance, this information could be used to make communication with computers more human-like or to make computer learning environments more effective. This thesis proposes an emotion recognition system from electroencephalographic (EEG) signals. Emotional states were i...
متن کاملEEG-Based Emotion Recognition during Music Listening
In Music Emotion Research, the goal is to quantify and explain how music influences our emotional states. Scientists realize that human brain is relevant to emotion, and it leads to the study of human emotion by capturing information from brain. Electroencephalogram (EEG) is an efficient tool to capture brainwave. This research proposes a framework to recognize human emotions during music liste...
متن کاملReliefF-Based EEG Sensor Selection Methods for Emotion Recognition
Electroencephalogram (EEG) signals recorded from sensor electrodes on the scalp can directly detect the brain dynamics in response to different emotional states. Emotion recognition from EEG signals has attracted broad attention, partly due to the rapid development of wearable computing and the needs of a more immersive human-computer interface (HCI) environment. To improve the recognition perf...
متن کاملComparison of Classification Methods for EEG-based Emotion Recognition
In this paper, we review different classification methods for emotion recognition from EEG and perform a detailed comparison of these methods on a relatively larger dataset of 45 experiments. We propose to combine the classifiers using stacking to improve the emotion recognition accuracies. Experimental results show that the combination of classifiers using stacking can achieve higher average a...
متن کاملEEG-based Emotion Recognition for Game Difficulty Control
Balance design taking game difficulty into account has an important role in game design. In recent years, a number of studies have tried to adjust difficulty by using various player dependent difficulty detection algorithms. But most of these methods need customizing its algorithm for each game. In this paper, we investigate the way to find adaptive game difficulty levels according to player’s ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers in Biology and Medicine
سال: 2021
ISSN: ['0010-4825', '1879-0534']
DOI: https://doi.org/10.1016/j.compbiomed.2021.104757